
Guide to API
Security Testing
Written by Jeff Forristal
Information Security Industry Expert

Pen Testing as a Service

Containerization and microservices are no longer just hype. While exact adoption
rates are debatable , both have become foundational tools used by organizations
looking to publish APIs for internal or external consumption. Microservices are
generally defined as a service-oriented architecture (SOA) variation ; however, there is
no formal protocol definition (unlike the historical SOAs that leverage clearly defined
protocols including SOAP, WSDL, etc.). The lack of a clear protocol makes application
security assessments of microservice APIs somewhat precarious, since the typical
go-to web security assessment tools, prescribed security assessment methodologies,
and general penetration tester experience may not include coverage or interaction
know-how for a particular microservice API offering or operational behavior. Public
microservice APIs are often exposed for direct interaction in B2B and mobile
application support scenarios, meaning their risk profiles slightly differ from typical
web usages and the related catalog of top security problems à la OWASP Top 10 .

The first challenge of microservice API testing is simply
finding, or discovering, the APIs to assess. APIs are often
decoupled from web properties, meaning typical web
assessment tools like web crawlers and web browsing
proxies will be ineffective. Forceful browsing and other
brute-force URL discovery methods leveraged against a
known API host/endpoint may yield some initial results,
but often such approaches will not divulge the API’s
parameters and thus lead to inefficient assessment
coverage. Better would be to import a structured
definition of the APIs into a security assessment tool, à la

https://containerjournal.com/2017/01/16/measuring-docker-adoption-rates-requires-precision/

https://en.wikipedia.org/wiki/Microservices

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

2
3

1

2

3

1

how WSDLs can be imported for automated SOAP assessments. However, the lack
of a core protocol definition for microservices has caused multiple different API
definition formats, e.g. Swagger, OAS, RAML, API Blueprint, and WADL. Quite often
security tools lack the ability to handle some (or all) of those formats, ultimately
leaving API security assessors left with manual targeting and entry point definition as
part of the initial phase of configuring/aiming the security testing tools. Public B2B
APIs are often, by nature, documented in a manner that should be sufficient for

Guide to API Security Testing

Testing Challenges: API Discovery

2

Microservice API
definitions can
come in many
forms:

• Swagger
• OAS
• RAML
• API Blueprint
• WADL

3

security assessors. Private mobile application support service APIs, however, may not
be publicly documented outside the interactions performed by the (binary) mobile
application—meaning security assessors should be prepared to leverage mobile
application reverse engineering or network man-in-the-middle techniques to divulge
API existence/details.

Even when a security assessor takes the time to manually target a web security tool
at a known microservice API endpoint, interoperability is still a significant challenge.
Authentication and authorization operation widely vary, leveraging everything from
static values (API keys) to dynamic tokens (JWT, OAuth), provided in HTTP request
headers or query/path parameters. Some implementations may use mutual SSL
authentication, necessitating a client SSL certificate. Your web security assessment
tools must be flexible enough to accommodate a wide variety of authentication
approaches and dynamic token refresh procedures, including the potential for
custom-coded logic if need be.

tool-particular operation or HTTP/web assumptions that do not apply in microservice
API assessment scenarios.

Mobile application assessments may require additional reverse engineering or
network man-in-the-middle interception to deduce API interaction with supporting
backend API/services; in some cases, specialized tools may be necessary to
reconstruct API data structures (e.g. protobuf) from binary or decompiled mobile

In fact, the need for custom-coded logic doesn’t end there.
API service results are often designed for specific-purpose
programmatic consumption, necessitating specialized
interpretation or scripted tool tailored to contextually
process the results correctly. The result data format itself
can vary beyond typical JSON, including binary formats
such as Google protobuf. Even the network/framework
transport can vary beyond the popular HTTP/1.x REST,
necessitating specific clients for things like gRpc, Thrift,
Avro, HTTP/2, etc. Overall, a security assessor should
have the capability to adapt existing tools/scripts and
even create new security assessment scripts for use, to
gain the best testing coverage. Methodologies may also
need to be appropriately adjusted, to alleviate any

Testing Challenges: API Interaction

Be prepared to
interact with
microservice APIs
in various ways:

• REST
• Thrift
• Avro
• HTTP/2
• gRpc
• Protobuf
• JSON

4

application code. Recent mobile OS-induced HTTPS/SSL traffic requirements (such
as IOS App Transport Security) and growth of SSL pinning implementations further
requires assessment methodologies to include SSL pinning circumvention techniques
as part of their standard practice, simply to witness API interaction particulars.

Microservice APIs are just software, and therefore can generally be affected by any type
of common software flaw such as those found in the Common Weakness Enumeration
(CWE) list . Beyond the traditional top risks outlined in the OWASP Top 10 , security
assessors of microservice, B2B, and mobile APIs should additionally assess risk in the
following API-particular areas.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://medium.com/netflix-techblog/starting-the-avalanche-640e69b14a06

https://en.wikipedia.org/wiki/Denial-of-service_attack

8
9

7

76

8

9

https://developer.apple.com/news/?id=12212016b

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

https://cwe.mitre.org/

5
6

4

4 5

Netflix made the news in 2017 when they released a blog article along with a
DEFCON 25 presentation detailing the impact of application DDoS attacks against
microservice architectures, which they proved by conducting an intentional and
successful application DDoS attack against their own infrastructure. The blog article
describes the attack as a “focus on expensive API calls, using their complex
interconnected relationships to cause the system to attack itself,” effectively causing a
processing avalanche that is asymmetrically inexpensive for an attacker to trigger but
costly for the system to handle. The risk is increased if such processing is accessible
without authentication, allowing an anonymous attacker to drastically impact the
system without accountability.

The Netflix blog article includes a recommended testing methodology and showcases
the release of various testing tools, which can be adapted for inclusion into a security
assessor’s methodology for microservice APIs. Security assessors should analyze the
DDoS potential of the processing cost/overhead in handling API calls for any public
B2B, mobile, or microservice invocation, to ensure the assessed backend APIs cannot
be intentionally crippled with minimal effort.

Testing Practices: Microservice APl Attack
Considerations

Application DDoS/Processing Avalanche

5

Microservice APIs are often provided as part of B2B/commercial API services (i.e.
SaaS), potentially with varying service levels for different customers. It is common
to involve customer rate limiting or throttling mechanisms as part of an B2B API
implementation, whereby certain customers/service levels are only allowed to
consume a limited amount of the service compared to higher tier customers/service
levels. Consumption can be measured in varying ways, but often it’s done by
 counting the number of service invocations/requests.

Bypassing or abusing the rate limiting/throttling
mechanism results in a theft of services risk that is
not only a loss of revenue (since the customer is not
paying for the extra services), but may also have
negative operational cost impact (since the API
provider is still paying for the processing of those
rendered services). API security assessments should
have a methodology and supporting test tools that
can determine if an API endpoint has implemented a
rate limiting mechanism, how that limiting mechanism
aggregates requests towards the limit (e.g. global
requests account, by IP address, by session token,
by API key, etc.), and methods to bypass the limit
mechanism (e.g. by switching IP addresses, by
refreshing the session token, etc.). If rate limits are
sufficiently enforced per caller, then the security
assessor should evaluate methods to create/register
multiple caller identities to use consecutively for
aggregate rate limiting bypass.

Microservice APIs can use conventional authentication/authorization patterns;
however, the mechanisms are often custom implemented and thus prone to typical
coding errors. The OWASP Top 10 2013 list already includes the “A2-Broken
Authentication and Session Management” risk, although many assessment
methodologies emphasis testing of session cookies and various session state
tracking mechanisms utilized by web service frameworks – mechanisms that are
generally not present for microservice APIs.

Rate Limiting/Throttling Abuses

Custom Authentication & Authorization Mechanisms

6

When assessing an API, a security assessor should first focus on becoming intimate
with the intended workings of the authentication/authorization leveraged for the target
implementation. Once the primary mechanism has been identified, the assessment
methodology should include tests for weaknesses. For example:

 • Foregoing or duplicating HTTP headers that carry auth values/tokens

 • Performing injection attacks for the API auth value/token

 • Noting if the API auth value/token is provided as a GET parameter,
 potentially exposing the value/token in HTTP request logs

 • Testing for inappropriate or weak uses of cryptography and randomness
 within the auth mechanism

 • Checking if auth enforcement is applied inconsistently, i.e. forgotten on
 certain API endpoints or certain requests subtypes/verbs of the same API
 endpoint

https://nakedsecurity.sophos.com/2017/09/06/apache-struts-
serialisation-vulnerability-what-you-need-to-know/

10

10

Various binary formats may be leveraged as part of a microservice API implementation:
Avro, Thrift, protobuf, etc. Incoming data in these formats needs to be deserialized or
parsed into a logical object for the implementation to operation on. A historical review
of CWE shows parsers and deserializers are notorious for having bugs in the parsing of
incoming, potentially malicious data. The implications can range from denial of service
attacks (excessive CPU consumption) to remote code execution. A recent (September
2017) example of this is a remote code execution vulnerability in the Apache Struts
deserializer of RESTful requests (CVE-2017-9805).

An experienced security assessor should take time to review all data formats received
by a microservice API, and consider if any parser or deserialization attack testing is
warranted. A mature assessment methodology should include tools to derive a corpus
of corrupt or malicious inputs that can be sent to an API service as part of security
testing. Reverse engineering of API clients, particularly mobile apps, may be necessary
to deduce the serialization formats being used by an API implementation.

Binary Deserialization/Parsing Attacks

7

The best place to start is to take a serious look at your current security assessment
capabilities, to determine if your methodologies or tooling have gaps, specifically in
handling microservice, B2B, and mobile API assessments. Be sure to inquire with your
third-party security assessors regarding how they approach APIs differently than a
typical web security assessment. Security program managers should realize that
standard web security assessment tools may not be sufficient for testing microservice
APIs, and should allow some budget for security teams to review or build tools to fill
API assessment gaps.

You should also encourage your security team members to learn/grow in DevSecOps
topics, so they remain exposed to emerging and standardizing technologies relating to
microservices, APIs, API implementation patterns, and common API frameworks
(along with the offered security capabilities/features). That learning can be extended
to partnering with development teams and augmenting their existing Continuous
Integration (CI) tests and testing frameworks to additionally perform security service
tests, alleviating the security team from having to deploy a second API testing
framework for security-exclusive test content.

Lastly, all organizations developing APIs should have clearly identified and preferred
strategies or technical architecture/design patterns to address the common API
attacks prior discussed, to ensure defensive consistency. Microservice developers
should routinely include circuit breaker, load shedding, and work timeout/abort
patterns as standard for any API implementation, while security teams assess the
operation of these implementations. Custom authentication and authorization
mechanisms are a critical review area; those mechanisms would benefit from a deep
source code review in additional to typical penetration testing/assessments.

Jeff is a security technology professional with over 18 years of experience in the security

industry. Throughout his professional career he has been responsible for conceiving new security

service offerings, developing industry-first and market-leading product features, educating

customers on security operations, and driving research into new security industry areas.

He has written multiple features and cover-story articles for Network Computing and Secure

Enterprise magazines. Under the pseudonym “Rain Forest Puppy,” he has been recognized as an

industry expert in web application security and was responsible for industry landmarks including

the first documented discovery of SQL injection, the first responsible security disclosure policy,

and the first intelligent web application scanner.

What You Can Do

Jeff Forristal

